Smart Hybrid Materials (SHMs)
مختبر شمس لعلوم النانو
Self-Assembled Nanomaterials for Biomedical, Sensing and Separation Applications

Page 06/25/2016 13:43:18

Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications

​Yassine, O.; Zaher, A.; Li, E. Q.; Alfadhel, A.; Perez, J. E.; Kavaldzhiev, M.; Contreras, M. F.; Thoroddsen, S. T.; Khashab, N. M.; Kosel, J. Highly Efficient Thermoresponsive Nanocomposite for Controlled Release Applications. Scientific Reports 2016, 6, 28539
Yassine, O.; Zaher, A.; Li, E. Q.; Alfadhel, A.; Perez, J. E.; Kavaldzhiev, M.; Contreras, M. F.; Thoroddsen, S. T.; Khashab, N. M.; Kosel, J.
Thermoresponsive nanocomposite, iron nanowires, microfluidic technique, magnetic release
2016
​Highly efficient magnetic release from nanocomposite microparticles is shown, which are made of Poly (N-isopropylacrylamide) hydrogel with embedded iron nanowires. A simple microfluidic technique was adopted to fabricate the microparticles with a high control of the nanowire concentration and in a relatively short time compared to chemical synthesis methods. The thermoresponsive microparticles were used for the remotely triggered release of Rhodamine (B). With a magnetic field of only 1 mT and 20 kHz a drug release of 6.5% and 70% was achieved in the continuous and pulsatile modes, respectively. Those release values are similar to the ones commonly obtained using superparamagnetic beads but accomplished with a magnetic field of five orders of magnitude lower power. The high efficiency is a result of the high remanent magnetization of the nanowires, which produce a large torque when exposed to a magnetic field. This causes the nanowires to vibrate, resulting in friction losses and heating. For comparison, microparticles with superparamagnetic beads were also fabricated and tested; while those worked at 73 mT and 600 kHz, no release was observed at the low field conditions. Cytotoxicity assays showed similar and high cell viability for microparticles with nanowires and beads.
 Cover-115.png