Colorimetric Peroxidase Mimetic Assay for Uranyl Detection in Sea Water

by Zhang, D., Chen, Z., Omar, H., Deng, L., Khashab, N. M.
Year: 2015

Bibliography

Zhang, D.; Chen, Z.; Omar, H.; Deng, L.; Khashab, N. M. Colorimetric Peroxidase Mimetic Assay for Uranyl Detection in Sea Water. ACS Appl. Mater. Interfaces 2015, 7, 4589–4594

Abstract

Uranyl (UO22+) is a form of uranium in aqueous solution that represents the greatest risk to human health because of its bioavailability. Different sensing techniques have been used with very sensitive detection limits especially the recently reported uranyl-specific DNAzymes systems. However, to the best of our knowledge, few efficient detection methods have been reported for uranyl sensing in seawater. Herein, gold nanoclusters (AuNCs) are employed in an efficient spectroscopic method to detect uranyl ion (UO22+) with a detection limit of 1.86 μM. In the absence of UO22+, the BSA-stabilized AuNCs (BSA-AuNCs) showed an intrinsic peroxidase-like activity. In the presence of UO22+, this activity can be efficiently restrained. The preliminary quenching mechanism and selectivity of UO22+ was also investigated and compared with other ions. This design strategy could be useful in understanding the binding affinity of protein-stabilized AuNCs to UO22+ and consequently prompt the recycling of UO22+ from seawater.

Keywords

Gold Nanoclusters Uranyl Peroxidase Mimetic Sensors Seawater Proteins